
DOCUMENT RESUME

ED 258 552 IR 011 707

AUTHOR Sleeman, D.; And Others
TITLE P4,scal and High-School Students: A Study of

Misconceptions. Technology Panel Study of Stanford
and the Schools. Occasional Report #009.

INSTITUTION Ftanford Univ., Calif. School of Education.
PUB DATE 1 84
NOTE For related document, see IR 011 711.
PUB TYPE Reports - Research/Technical (143)

EDRS PRICE MFU3/PCO2 Plus Posta7e.
DESCRIPTORS Course Evaluation; *Error Patterns; *Experimental

Teaching; High Schools; High School Students;
*Instructional Material Evaluation; Learning
Experience; *Programing; Programing Languages;
Psychological Studies; Screening Tests; Teaching
Methods; Test Construction; Test Results

IDENTIFIERS *Pascal Programing Language

ABSTRACT
In an attempt to initiate a new approach to the

teaching of Pascal, a study was conducted to ascertain the
difficulties students encountered when they attempt to learn this
computer language. Screening tests were given to 68 students in
grad::: 11 and 12 who had just completed a semester course in rascal..
The purpose of the test was to detect possible difficulties in basic
constructs such as reading and printing data, assignments, and the
several control structures provided by Pascal. This test that showed
over 50% of students had major difficulties with Pascal, and those
problems are described, with notations as to whether the errors were
frequent, or fairly frequent, or occasional. A group of 35 students
were given a detailed clinical interview which is also described, and
their-explanations of why errors occurred are given as well. A
discussion of the data includes a summary of the investigators'
assessment of the students interviewed and profiles of typical
students. Finally, a comparison is drawn between this and similar
studies, and the report concludes with a plan for future
investigations which will include: (1) a lc-4c at the difficulties
high school students have with advanced concLiots of Pascal and also
with Logo; (2) an attempt to determine 4hether the errors noted in
this study can be remediated; and (3) experimentation with different
teaching/presentation strategies. (JB)

* Reproductions supplied by EDRS are the best that can be made *

* from the original document. *

4

US. DEPARTMENT OF inucanon
NATK/NAL iNSTITUTE OF EDUCATION

EDUCATIONAL RESOURCES INFORMATION
CENTER IERICI

ATNa document has bean raptoducad as
racattota hum tha taaistot « o,gantration
urrsitnelorsi 1

ctsorgres Nave been made to an4aLiva
rintroduL taw quality

Poents of YKw Ir tniselots,% stIted rn shrsdutu

rnent du nut necessarrty represent plficret NIE
pputesn or upr,v

OCCASIONAL REPORT # 009

'Technology Panel

Study of Stanford and the Schools

Pascal and High-School Students:

A Study of Misconceptions

D. Sleeman
Ralph T. Putnam

Juliet A. Baxter
Laiani K. iiklapn

August 1984

These occasional reports present preliminary findings of research
underway or discuss issues of concern to the panel. They are intended to
stimulate comment and to maintain commun4cation with interested parties
both within and outside the Study of Stanford and the Schools. They are
draft documents and are not to be quoted or cited. They do not
necessarily represent the views of Stanford, the Study as a whole, or
even the panel as a whole. Members of the panel and addresses where they
may be reached are included at the rear of the report. Comments of
readers will be great'y appreciated.

BEST COPY AVAILABLE

-PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

nprpk SiPpman

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)."

;

Pascal and High-School Students:

A Study of Misconceptions

ax, D. Sleemanl
Ralph T. Putnam
Juliet A. Baxter
Laiani R. Kuspa

School of Education
Stanford, University
Stanford, CA 94305

Abstract

A screening test was given to 3 classes of high school students, who

were just completing introductory semester-long courses in Pascal. These

tests were graded, and subsequently 35 students were given detailed

clinical interviews. These interviews showed that errors were made with

essentially every Pascal construct. Over half the students were

classified as having major difficulties -- less than 10% had no

difficulties.

The errors noted are discussed in detail in this paper. A major

finding is that the students attribute to the'computer the reasoning

power of an average human. Ite paper also speculates about how difficult

it might be to remediate the errors found, and concludes with an outline

of future work.

I

- 2

1. Introduction

The growing availability and use of computers in the past few years

has resulted in the introduction of programming courses in many schools.

High Schools offer instruction in programming on the grounds that it

provides students with needed job skills, that it is an important

component of computer literacy, or that it is a powerful way to develop

problem-solving and analytical thinking skills. because programming,

particularly in the high school curriculum, is a relatively new

Phenomenon, we have a limited understanding of how these students learn

to program -- the difficulties they have and the misconceptions they

develop. Understanding these issues should serve an important rote in

improving instruction in this area as well as providing insight on the

more general area of the learning of complex skills.

It is widely accepted that to program effectively one must:

. have a good knowledge of the syntax and semantics of the

target programming language. (i.e. have an understanding of the

conceptual machine supported by the programming language)

. be able to debug programs

. be able to analyse (complex) tasks and design algorithms aimed at

solving these tasks.

The ability to understand (or "read") programs is a by-product of

the first two stave. Further, it is generally agreed that the topics

are listed above in their order of complexity. That is, task analysis

azd algorithm design are the most demanding. Several researchers,

including Shell (1981), look at this issue somewhat differently. While

not necessarily disagreeing with the "accepted" wisdom, Shell argues that

when expert programmers are given a new task, they retrieve appropriate

chunks (such as a loop to add N numbers) from long-term memory and modify

these to solve t..e current task, (Shneiderman, 1976). Shell argues that

teachers of programming should be concerned about how to get novice

programmers to this state, suggesting that the traditional approach may

not be anprorrisr- Ti ' 1.--7217:-1 zthiwr zrzz:, a. Phymies and

Mathematics, Cognitive Science researchers have noted that the

organization of domain knowledge in experts is radically different from

that of novices (see for instance Gentner 6 Stevens, 1983). The key

educational question is how to produce instructiv.,1 sequences to

effectively convey the content and structure of expert knowledge to

novices. It is reasonable to suppose that Shell would favour giving

students complete programs to read, analyze and modify, and for each of

these programs to contain one or more useful "chunks". (The detail of

the language's syntax and semantics would then be introduced as secondary

issues.) This is not a totally new idea (tee Burk, 1971), and has been

partially included in many introductory level ..Yersity programming

courses.
2

Although intuitively we accept Shell's basic point, in this study we

were not able to initiate a new approach to the teaching of Pascal.

Moreover we felt that further information about the difficulties

experienced by students when taught programming using "traditional"

methods would provide additional empirical evidence. When we Wigan our

study of programming classes in high schools, we expected to study the

three stages noted above. However, it soon became clear that a

significant number of students in the classes we studied had significant

difficulties with the first stage, and were thus hampered in their

attempts to implement and extend programs. The first stage - students'

knowledge of syntax and semantics-thus became the focus of this study.

As noted earlier. one 00,1;..r -
piugLaw is

gaining an understanding of the "virtual machine" (Wegner, 1971) or the

"conceptual machine" (Norman, 1983) underlying a particular language -- a

working model of how various constructs in a language function (DuBoulay

& O'Shea, 1981). A programmer must know, for example, what happens when

IF or READLN statements are used in a Pascal program. The current study

explores some of the misunderstandings of the conceptual machi.e that

some students hold in the early stages of learning to program in Pascal.

We have concentrated primarily on their understanding of fundamental

constructs such as variables, assignment, and several control constructs.

-it have examined to a lesser extent their ability to trace and debug

programs.

DuBoulay and O'Shea (1981) provide a fairly comprehensive summary of

earlier work on learning to program in commonly used languages, including

BASIC, FORTRAN, LOGO, and Pascal. The majority of the studies they

reviewed reported the constructs of a particular language with which

students had difficulty. Frequently the data provided included:

- - the constructs of the language that were most frequently used;

-- the constructs of the language that were most frequently used

incorrectly;

- - the error-proneness of these constructs (where error-proneness is

the percent of total instances of a construct in which errors

were made);

-- some idea of the persistence of particular errors (where

persistence indicates the likelihood of them being removed).

The first detailed analysis of the difficulties users have with

Pascal was undertaken by Ripley and Druseikis (1978) who did to studies.

In their first study of computer science graduate students, they reported

that 64% of the programs submitted were free of both syntactic and

semantic errors. In their second study of naive programmers, they

reported that 58% of the programs submitted were again free of syntactic

and semantic errors. With the later group, the most common syntax

errors were associated with the misuse of the semicolon. The second most

compon source of error was declaration, because of the restrictions on

the ordering of declaration keywords. Missing BEGINS and ENDS were the

third most common source of errors; Ripley and Druseikis argued that

these errors might be resolved if the language had more specific

terminators, e.g. BEGLNTHEN, BEGINELSE, ENDTHEN, ENDELSE, etc. to replace

the "universal" BEGIN and END.

More recently Soloway and his co-vorkers have analyzed the errors

which university students make with assignment and loop constructs in

Pascal. The majority of their analyses have been carried out on programs

which have been collected automatically by the operating system, (see

Soloway, Ehrlich, Sonar i Greenspan, 1982). More recently they have also

used interview techniques to probe students' understanding of the

assignment construct, showing that I:mq + 1 and SUM:- SUM +N were viewed

as different entities; i.e., the pragmatics of the situation dominated

these students' interpretation (Sonar and Soloway, 1982). Another survey

showed that Jia of chc student: believed th:t the unILE statement aZed

like a demon. 3

With the exception of the study just mentioned, a major omission in

all these studies is that they did not determine the nature of the errors

associated with various constructs. They presented only the frequencies

with which certain constructs were incorrectly used in programs written

by novice and sometimes expert programmers. Prgrammers who made errors

were not questioned to determine the nature of their misunderstandings.

Cognitive scientists working in other subject domains have

postulated mental models which people hold of various physical and

symbolic systems (Gerstner 6 Stevens, 1983; Davis et al, 1978; Larkin et

al, 1980). Such studies have relied heavily on interview techniques to

reveal the nrture of people's misunderstandings. We have applied this

methodology to study students' understanding of the conceptual machine of

a programming language -- their mental models of the language.

The objective of this experiment was to study the errors which

students made in interpreting programs -- and from these begin to

understand the misconceptions of novice programmers. As a result of this

study we hope to facilitate better teaching of programming -- teaching

that avoids or corrects these misconceptions. We also hope this study

will provide some valuable insights into how students learn to work

skillfully in a complex formal system.

Method

Subjects,

Students from threat. h4 s h lagommoa

A pilot study was done with one class of 27 students; two additional

classes of 19 and 22 students respectively were involved. All three

classes were introductory courses in Pascal.4 Our studies took place

towards the end of each course. The majority of the students were from

grades 11 and 12 and had strong math backgrounds (as there were math

preeequisites).

Screening Test

Prior to conducting the Pascal study we had carried out an analogous

study of the difficulties students encountered when they learn BASIC,

(Putnam et el., in press). For the BASIC study we had developed an

effective screening test and a set of more detailed question sheets

focusing on particular topics. The task at the beginning of the Pascal

study was to refine these tools (the test used is available from the

authors). The purpose of the test is to detect possible difficulties in

basic constructs such as reading and printing data, assignments, and the

several control structures provided by Pascal. Nine items require

writing the output produced by short (6 to 14 line) programs, each

designed to highlight specific concept(s). One task requires the

student to debug c program for which a written description of the intent

has been provided. Two items address a similar task, but each program

uses a different control structure. The test took between 15 and 35

minutes for the students to complete. Because we asked questions about

programs which we had prepared, only the students' reading knowledge of

Pascal was tested. It would appear that creating a program would be more

complex than understandini a given (short) ern!_ram and An WP Sflegant

that this test represents a teat of minimum competence.

The screening test was pretested with a class of 27 students. Minor

changes were made in the test before it was used with 2 additional

classes. In general the test and the questions used in the interviews

were fine-tuned for each class to reflect the teaching materials used,

the order in which concepts had been introduced, etc.

Experimental Procedure

The screening test was given to each student in the three classes.

Each student's performance was evaluated by one of the researchers who

decided that the student should be interviewed, was a marginal canaidate

for an interview, or did not need an interview (depending on whether the

student had minor or no difficulties, or manifested a well understood set

of misunderstandings). Interviews were conducted with 9, 15, and 11

students respectively from the three classes (in the case of the first

class it was not logistically possible to interview all the students for

whom an interview was suggested). The interviews were clinical in

nature, with interviewers using questions and short programs prepared in

advance. but also following up with various probes and programs composed

on the spot. The goal was to clarify as far as possible the nature and

extent of the student's misconceptions about programming concepts.

Students were asked to say what output would be produced by various

programs, to trace programs and explain how they work, and to debug short

programs. In several cases, students were asked to trace identical

programs with different sets of input data. The discussion of a

Iwuclaiiy continued untii the reaearcner was abie to

decide: i) the "precise" nature of the student's error, or ii) that the

student had a variety of possible ways of interpreting a construct, or

iii) that the student had little knowledge of a particular concept. The

interviewer also made a subjective assessment about his or her confidence

in this prediction and also noted how cocsistently the student had

manifested the several error(s) (for further details of this overall

methodology see Sleeman, in preparation). The standard programs and

program fragments used in many of the interviews are available from the

authors. Some supplementary items created for individuals are included

the text.

Tape recordings, written notes, and responses generated during the

interviews were perused for patterns of errors and misconceptions. As

the study was exploratory and qualitative in nature, no quantitative

11

- 10 -

analysis techniques were used. Findings are discussed in the following

sections.

Se:tion 2 gives en overview of the errors encountered, with some

indicatiln cf the frequency of their occurrence.. Section 3 gives several

summaries of the data - including a discussion of typical students with

minor and major difficulties, and a classification of the errors noted.

Section 4 compares the results of this experiment with earlier studies.

The paper concludes with suggestions for future studies.

2. Summary of Errors Encountered

A comment on error frequency

As noted above, the screening tests were given tc 68 students of

which 35 were subsequently interviewed. We shall refer to an error as

being frequent with this population if it occurs with 25% or more of

the interview 'populatiori(i.e. 8 or more students), fairly frequent

if it occurs with 4-7 students, and occasional if it occurs less

frequently (i.e. with 1-3 students). Note this figure does not capture

the frequency or the consistency with which each error was encountered

with individual students; specific comments tbout theie aspects will be

interspersed throughout this section.

2.1 Difficulties with READLN statements

Several students had difficulty understanding how a READLN statement

assigns values to a variable. Four categories of misconceptions

appeared: semantically constrained reads, data read in alphabetic order

of the variables, order of declaration determines the order of reading

from the file, and multiplevalue reads.5

Semantically constrained reads 1ICla.1)

Eleven students believed that a READLN statement used with a

meamingful variable name causes the program to select a vaiuc based on

the name's seining. (Thus given the frequency classification given

earlier this is a frequent error). For exam7le, given the following

program:
6

PROGRAM B1;

VAR First,Smallest,Largest: INTEGER;
BEGIN

WRITELN('Enter three numbers');
READLN(Largest,Smallest,First);

END.

5 10 1 1

The students with t'nis error said that ' would be read into "smallest",

10 into "largest" and 5 into "first". The majority of these students

exhibited this error consistently on this program and in two other

programs where it could occur. The second program used to probe for this

error was:

PROGRAM B2;
VAR Even,Odd: INTEGER;
BEGIN

WRITELN('Enter two numbers');
READLN(Odd,Even);

END.
2 3 1

- 12 -

Ten stu6ents read 3 into "odd" and 2 into "even".

Order of declaration determines the order of reading

This was a fairly frequent error and it showed up with:

PROGRAM B4;
VAR A,B,C: INTEGER;
IEGIN

WRITELN('Enter three numbers');
READLN(C, B,A)

END.

f 15 25 20]

These student'_ argued that A was assigned the first number, B the second

number and C the third number "because of the order the variables were

declared". Typically the interviewer then modified the order of the

variable declarations, and asked the students to rework the task. In all

cases the response was consistent with this error.

Multiple-values read into a variable

This freqJently occuring error was noted in:

PROGRAM B3;

VAR Even,Odd: INTEGER;
BEGIN

WRITELN('Enter data: I);
READLN(Even,Odd)

END.

i 3 2 10 5]

-13-

These students consistently and confidently said that "even" was assigned

the values 2 and 10 and "odd" 3 and 5. The data set was then frequently

added to and the students continued to manifest this error. Further,

when multiplevalued variables occur in a conditional statement these

students either said that the first value is used for comparison or

that the comparison cannot be made or the program loops until the values

in the variables have been "used".

2.2 Difficulties with print statements

The following three errors occurred occasionally with WRITELN

statements:

a) WRITELN('Enter a number: ') caused a number to be read; similarly

WRITELN('Enter 4 numbers: ') caused 4 numbers to be read.

b) WRITELN('Enter a number: ') caused the variable name and its

value t3 be printed.

c) After this statement has been executed the program can choose a

number from the data statement.

After we had encountered these students the following diagnostic

sequence was devised:

X:= 3;

WRITELN('The value of X is 1');
WRITELN(X);

All subsequent students who did not have the errors noted above were able

to cope with this correctly, but we are confident that the students with

this error would have given the answer "1 ". This item has been added to

our repetoire and will be used subsequently.

2.3 Assignment statements

15

- 14 -

The first item of the screening test was designed to detect

difficulties with assignment statements and supplementary examples

produced for the interviews probe this construct further. Although the

several errors only occurred occasionally, a total of nine 4cudents bad

difficulties with assignment statements. The difficulties noted include:

1. A:= B was interpreted as switching variables, A:=B and B:=A (3

students showed this error).

2. The assignment statement causes the instantiated statement to be

printed. Given the sequence A:=2; B:=3; A:=1; one student said the

computer would print 2 r, 3.

3. The assignment statement had no effect (noted with 3 students).

4. A:= B was interpreted as A = B by 2 students.

2.4 Variables

The most significant "variable" error was the previot.sly mentioned

multiple value error. The following errors have also been noted

occasionally:

1. Confusion of variables. In the sequence:

READLN(P); Q:= Q+1;

the latter statement is executed as if it were:

Q:= P+1;

2. Values of variables are printed when the variable is encountered on

the LHS (left-hand side) of an expression.

3. The value of the LHS variable is printed whenever its value changes.

2.5 Difficulties with loop ct.nstructions

A. Errors Common to both the FOR and WHILE constructs:

16

-15-

1. WRITELN adjacent to the loop is included in it, IIIIA2.1). This

error occurred frequently and was noted with nearty half the students

interviewed. The programs which highlight this are:

PROGRAM G3;
VAR P,Q: INTEGER;
BEGIN

Q:a 0;
WRITECEnter a number:
kEADLN(P);
WHILE P <> 0 DO

BEGIN
IF P > 0 THEN

Q:mQ + 1;
WRITE('Enter a number:
READLN(P)

END;
WRITELN(Q)

END.

1 -I -3 2 4 0 j

and

PROGRAM A5;
VAR I,X: INTEGER;
BEGIN

FOR I:a 1 TO 3 DO
BEGIN

WRITELN(' Enter a number.');
READLN(X)

END;
WRITELN(X)

END.
6 3 4 2 4 1 8

- 16 -

Curiously enough, those students who consistently make this error with

the WHILE problem lo not necessarily make it with the FOR loop, and vi ..e

verse.

2. Data-driven Looping

Several students indicated that the number of numbers in the data

determined the times a loop was executed. Thus given the program:

PROGRAM A2;
VAR I, X: INTEGER;
BEGIN

FOR I:.1 TO 3 DO
BEGIN

WRITELN('Enter a number.1);
READLN(H);
WRITELN(X)

END
END.

[6 3 4 2 4 I 8]

We have observed the following output:

6 3 4 2 4 1 8

6 3 4 2 4 1 8

6 3 4 2 4 1 8

The students explained that the number of values in the data set

determined the number of columns, and the valu^ of the FOR-loop limit (in

this case 3) determined how many tines the process was repeated.

Given 6 2 as input data this same student produced the following output:

6 2

6 2

6 2

-17-

3. Scope problems

Several errors involved misconceptions 'tout which statements are

repeated in loops and where loops begin and end.

a) Only the last instruction of a loop is executed multiple times.

The other instructions are only executed once but the last instruction is

executed the correct number of times. This error was noticed fairly

frequently, but it only occurred in loop where WRITELN statement was

the laec one in the loop (thus it may be this error was caused by the

write statement and not the loop construct).

b) BEGIN/END defines a loop. Too students thought that all the

numbers in the data set would be printed despite the absence of a FOR or

WHILE statement. The program is:

PROGRAM A3;
VAR X: INTEGER;
BEGIN

WRITELN('Enter a number.
READLN(X);
WRITELN(X)

END.

f 6 3 4 2 4 1 8

a variant on this error, scope of the loop is determined by

indentation. In the case of some other programs, several students said

that the WRITELN "went together with the FOR loop because they were lined

up". One such program is:

PROGRAM Dl:

VAR R, C: INTEGER;
BEGIN

FOR R:= 1 TO 4 DO
BEGIN

FOR C:= 1 TO 3 DO
WRITE (W);

WRITELN
END

END.

- 18 -

c) After a loop is executed control goes to the first statement of

the program. This error was seen occasionally and in short programs

could be interpreted as re-initialising variables each loop-cycle.

Although each of the scope errors in loops only arose occasionally,

the total number of students who had difficulties with the scope concept

was approximately one third of those interviewed.

B. !ricrs specific to FOR loops

We will just note 2 additional errors.

1. The control variable does not have a value inside the loop. (This

occurred fairly frequently.)

2. The FOR loop statement acted like a constraint on the embedded

READLN statement. A student said that only the numbers 3, 2, and 1 could

be read with:

- 19 -

PROGRAM A5;
VAR I,X: INTEGER;
BEGIN

FOR i : 11O : DO
BEGIN

WRITELN('Enter a number.');
READLN(X)

END;
WRITELN(X)

END.

(6 3 4 2 4 1 8)

Although with this group of Pascal students this error only occurred

once, we have previously noted it occurred frequently with students

learning introductory BASIC.

2.6 Errors noted with IF statements

Four types of errors were noted occasionally with IF statements.

However, 8 students (or 252) made at least one of the errors:

1. Program execution is halted if the condizion is false and there is no

ELSE branch.

2. Both the THEN and the ELSE branches are executed.

3. The THEN-statement is executed whether or not the CONDITION is true.

4. IF <a> THEN <10; <c); is interpreted as

IF <a> THEN (b> ELSE <0;

2.7 Errors with procedures

These errors fell into two categories:

1. All statements including those in procedure bodies were executed in

the order they appeared. This was a frequent error.

-20-

2. A fairly frequently occurring variant is that procedures are executed

when they are encountered in a top-to-bottom scan of the program text and

Bain when they are called.

2.8 Tracing and Debugging

As noted earlier tracing and debugging were not emphasized in this

study, but we did include a program in the screening test and a program

in the subsidary material which highlighted these issues. Further,

interviewers frequently asked students to trace some of the other

programs if they thought this would help determine the nature of the

students' difficulties. From this activity, the several interviewers

concluded that at least half of the students could not trace through

programs systematically. Further, we concluded that these students often

decided what the program should do on the basis of a few key statements,

and would then "project this insight" onto the program as a whole.

1. Some students' interpretation of the following program is

dominated by the variable Smallest -- "obviously this program is to find

the smallest of a set of numbers". Thus this program highlights a

variant of the semantic read misconception:

21

PROGRAM II;
VAR Smallest, Number: INTEGER;
BEGIN

WRITELN('Enter a number: ');
READLN(Number);
Smallest:* Number;
WHILE Smallest <> 0 DO

BEGIN
IF Smallest > Number THEN
Smallest:0 Number;
WRITELN('Enter a number: '

READLN(Number)
END;

WRITELN(Suallest)
END.
1 9 5 6 2 0]

) ;

These student assume that the first READLN(Number) statement reads the

lowest value from the data line because, the smallest number is needed in

the pent statement, Smallest:Number. This error was noted occasionally.

2. Students' interpretation of several programs relied on what

would be reasonable output, rather than the actual output statements in

the program:

PROGRAM F2;
VAR Number: INTEGER;
BEGIN

WRITE('Enter a Number: ') ;

READLN(Number);
IF Number 7 THEN
WRI1ELN('Unlucky Number');

IF Number 10 THEN
WRITELN('Lucky Number');

WRITELN('The Number was', Number)
END.

1 4 1 1 10 1 1 7 1

For instance when the number 10 was read, students said something like

"Well it will print LUCKY NUMBER and that's all as there's no point doing

-22-

the next line as we know the value must be 10 as it's a lucky number", an

analogous explanation was given for the UNLUCKY number. These

explanations were encountered frequently.

3. Summary of the data

The data is both rich and complex and so we shall attempt several

overviews each of which will highlight some aspect.

Figure 1

Summary of Investigators' Assessment of Students Interviewed

Male Female Toth'

No difficulties 3 (8.6%) 0 (0%) 3 (8.6%)

Minor difficulties 6 (17.14%) 8 (22.9%) 14 (40%)

Major difficulties 12 (34.28%) 6 (17.14%) 18 (51.4%)

21 14 35

3.1 Summary of all the students interviewed

Incorrect variants of virtually every construct in the Pascal

language were found with these students. At least 32 students out of the

total population of 68 students had minor problems, and 18 of them (or

27%) had major difficulties. Anecdotally, teachers report that students

- 23 -

debug programs by a "trial-and-error" method. This study lends support

to this view, as, in the case of many students, several Pascal constructs

are only partially understood (or subject to multiple interpretations),

thus making a trial-and-error approach the only realistic alternative!

This study shows that even after a full semester of Pascal,

students' knowledge of the conceptual machine underlying Pascal can be

very fuzzy. This is a more widespread problem than we had expected and

one which is not totally appreciated by the teachers who frequently set a

performance- based completion criteria for the class. Not unreasonably,

programming tasks are completed jointly by several students often masking

the several misunderstandings of the individual students.

Each interviewer classified each student's performance as having

essentially no difficulties, minor- and major-difficulties; this

information is tabulated in figure 1. From this figure we note that 3 of

the students did not have any problem in the interview although the

screening test indicates they had. In most cases this has been

attributed to the students rushing the test or not taking it seriously.

(Note: all 3 were males). Of the remaining students, the figures show

they fall nearly equally between those who,have minor and major

difficulties. However there is r greater proportion of males who had

major difficulties than females, namely 12/18 males (66.6%) had major

difficulties as compared with 6/14 (42.9Z) females. (These figures are

based on the population interviewed and not the total numbers screened).

Interestingly, our assessment of the students closely with the teacher's

evaluation.

- 24 -

3.2 Profiles of typical students

So far in this paper we have given an account of the errors which

have been noted in the population with some indication of the number of

students who manifested that error. By way of contrast, in this section

we will describe all the difficulties noted for two students; one was

described as having minor difficulties and the other having major

difficulties.

Example of a student with minor difficulties.

This student appeared to have two errors:

1. Assignment being interpreted as a switch

A:- B is interpreted as A:mi B and B:= A.

(The student did not manifest this behavior consistently).

2. Statements in procedures are executed as they are encountered.

(The student appeared to be consistent with this error).

Note too that when we interviewed this class, procedures had only

recently been introduced.

Example of a student with major difficulties.

The errors reported with this student were:

1. Semantically constrained reads (a consistent error).

2. The alphabetic ordering of the -ariables determines the order in

which the data is read (not applied consistently).

3. Read a value when a variable is encountered in a statement (not used

consistently).

4. WRITELN('Enter a Number') causes a value to be read (not used

consistently).

- 25 -

5. WRITELN adjacent 'o a loop construct is considered a part of the loop

(a consistent error).

6. The numbar of data elements determines the number of times a loop is

executed (a consistent error).

7. The control variable does not have a value in the loop body.

8. The order of execution of 2 statements was inverted consistently in

one program:

PROGRAM Cl;
VAR Number: INTEGER;
BEGIN

Number:

WHILE Number < 5 DO
BEGIN

WRITELN(Number);
Number:=Number 1

END
END.

was executed as if the loop body was:

Numbera.Number + 1; WRITELN(Number);

However, this behaviOur was not noted with other programs.

9. Infer program function based on a number of commands.

A section of the interview with this student is quoted in section

2.8 where this error is described. Essentially we believe this.student's

interpretation of the program was dominated by several key statements in

the code, and the notion that the machine would act "reasonably". Why, he

argued, would the 'machine execute the last WRITELN which gives you the

-26-

value of the number, when it has already told you that the number wee

lucky and so you'd know it had the value of 10?

We have classified this student as having major difficulties not

only because of the sizeable number of difficulties but because we

believe some of the misconceptions will be hard to remediate. For

example, we believe that the last 2 errors (8 and 9) will be difficult to

remediate as here the student is calling upon a lot of common-sense

knowledge. This issue will be discussed again in section 3.3.

3.3 Error classification

Implied at the end of the last -Ibsection is the belief that some

misconceptions will be much easier to remediate than others. In the

algebra domain, for instance, Sleeman has suggested that some errors

occur because the user omits one of the substeps of a rule which he

essentially knows; we have called these manipulative errors (Sleeman,

in press). Other errors indicated that the student has little

understanding of basic concepts in the algebra domain. For example we

have seen the expression

3 X + 4 X 19 changed to X + X 19 -3 - 4

We have referred to errors of this sort as being parsing errors. To

generalize this classification to pro:ramming, and possibly to other

domains, we propose referring to these classes of errors as surface and

deep errors.? We suggest that an example of a surface error in this

domain is seeing the FOR loop with range 0 to 5 as 1 to 5. Lack of

understanding of variables is a complex issue8 and we suggest should

be classed as a deep error. As indicated earlier we believe that the

27

inference of the functionality of a program from a few key instructions

is a deep error and one hich arises from the user bringing common sense

reasoning to bear on a formally defined domain. In addition to this

issue we believe that many of the errors noted, for example, semantically

constrained reads can be explained by the user attributing to the machine

the reasoning power of an average human. We refer to this subclass of

errors as the "reasonably human" error class.

4. Comparison with the difficulties noted in this and other studies

Finally we should recall that for the most part we have presented

students with syntactically correct programs hence the significant

difference in these findings and those of Ripley and Druseikis, 1978.

However, we noticed that these students had considerable problems with

the notion of scope (which supports Ripley & Druseikis's third

observation, see section 1). Moreover, we generally noticed that the

students we worked with had only a fuzzy idea of syntax, and we would not 'II'

be surprised if they made the types of punctuation errors noted in the

earlier study in their own programs.

With our students, only one student out of the 35 interviewed

treated the WHILE statement as a demon, a marked contrast to the Yale

data.

-28-

5. FURTHER WORK

We plan to:

I. look at the difficulties high-school students have with more advanced

concepts of Pascal (in this study we only touched upon procedures);

2. investigate the difficulties which high-school students have with

LOGO (to give us a third point of reference);

3. determine whether it is possible to remediate the sort of errors we

noted in this study. If this is possible, try different remedial

strategies to determine their effectiveness;

4. speculate further about how such misunderstandings arise and possibly

experiment with different teaching/presentation strategies.

6. ACKNOWLEDGEMENTS

We wish to thank the teacher and students who participated in this

study. Haym Hirsch and Alan Char helped with the interviewing. Marcia

Linn helped by providing access to an earlier test of BASIC programming.

We also thank the Study of Stanford and the Schools, directed by Dean M.

Atkin and President Kennedy, and D. Walker and M. tapper (Chairs of the

Panel on Education and Technology) for providing funding for the study.

Finally, Mrs. Dorothy Brink provided invaluable secretarial support.
a

-29-

7. REFERENCES

Boner, J. 4 Soloway, E. (1982). Uncovering principles 6 novice

programming. Research Report 240, Dept. of Computer Science, Yale

University

Bork, A. M. (1971). Learning to program for the science student. J.

Educ. Data Processing, 8, pp. 1-5.

Davis, R. B., Jockusch, E. 6 McKnight, C. (1978). Cognitive Processes in

Learning Algebra. J. of Children's Mathematical Behavior, 2, pp.

1-320.

Du Boulay, B. 6 O'Shea, T. (1981). Teaching novices programming. In M.

Coombs 6 J. Alty (Eft.), Computing skills and the user interface

London: Academic Press./pp. 147-200.

Gentner, D. 6 Stevens, A. L. (Eds.). (1983). Mental Models. Hillsdale,

NJ: Erlbaum.

Kuechemann, D. (1981). Algebra: In Children's Understanding of

Mathematics: 11-16 ed. K. M. Hart: Murray: London, pp. 102-119.

Larkin, J. H., McDermott, J., Simon, D.P. 6 Simon, H.A. (1980). Models

of competence in solving physi . problems. Cognitive Science, 4,

pp. 317-345.

30

Laos, R. S. (1975). FORTRAN programming: an analysis of pedagogical

alternatives. J. of Educ. Data Processing. 12. pp. 21-29.

Norman, D. A. (1983). Same observations on mental models in Mental

Models edited by Gentner, D 6 Stevents, A. Erlbaum.

Putnam, R. T. , Iceman, D., Baxter, J. A. 4 Kuspa, L. K. (in press). A

Summary of Misconceptions of High School WIC Programmers.

Ripley, G. D. & Druseikis, F. C. (1978). A statistical analysis of

syntax errors. Computer Languages, 3, pp. 227-240.

Sheil, B. The psychological study of programming. (1981) Computing

Surveys, 132 pp. 101-120.

Shneiderman, B. (1976). Exploratory experiments in programmer behavior.

Int. J. Computer Information Science, 5, pp. 123-143.

Sleeman, D. (in press) An Attempt to understand student's understanding

of basic algebra. Cognitive Science.

Sleeman, D. (in preparation). Protocol Analysis & Interviewing: some

methodological issues.

Soloway, E., Ehrlich, K., Boner, J., & Greenspan, J. (1982). What do

novices know about programming? In A. Badre and B. Shneiderman

(Eds.), Directions in human/computer interaction Norwood, NJ:

Ablex. pp 27-54.

Wegner, P. (196S). Programming Languages: Information Structures

and Machine Organization. McGraw Hill, pp. 84-91.

31 -

Footnotes

1. Also Computer Science Department.

2. Lesvos, (1975) claims that the approach of analyzing complete programs

was no more effective than the traditional one -- however, we feel that

this important line of investigation should not be abandoned because of a

single negative data point.

3. That is given a WHILE statement of the form:

WHILE coed IX)

BEGIN Si;

Sn

END

after executing a statement Si, of the WHILE body they would check to see

whether the (X)ND is still true, if not they would skip the remaining

statements.

4. Most students had some prior exposure to BASIC; the effect of a

previous programming language on a second language is an issue to be

considered in a further study.

5. It is difficult to categorize unambiguously many of the errors noted.

For example: is the last error mentioned a "READ" or a "variable" error?

4
- 32 -

In this paper we make an arbitrary assignment to a class which seems

reasonable; in some cases we discuss possible alternative categories.

6. The convention used in this and subsequent programs is that the data

Ats provided in brackets immediately following the program; multiple

brackets indicates multiple sets of data.

7. Following the recent distinctions introduced to designate the level

of an expert system's knowledge of its domain.

8. Also encountered in algebra (Kuechemann, 1981).

